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We investigate A-entropy with respect to certain semispectral measures in a 
given state. It is shown that the entropy with respect to an observable 
describing "simultaneous" measurement of position and momentum is 
greater than the yon Neumann entropy. Similar results are obtained for the 
fuzzy and sharp positions. The continuity properties of this entropy are also 
examined. 

1. I N T R O D U C T I O N  

The concept of  A-entropy for spectrally absolutely continuous operators 
(for example position, momentum of particle in quantum mechanics) was 
introduced by Grabowski (1978). In that paper the possibility of  defining such 
a notion for a semispectral measure was pointed out. 

Here A-entropy with respect to certain semispectral measures [so-called 
generalized observables in sense (Davies and Lewis, 1970; Holevo, 1973)] will 
be investigated. In particular it is shown that entropy for a fuzzy observable 
of  position is greater than for a sharp one. The continuity properties of  this 
entropy are examined. Further it is shown that the entropy with respect to an 
observable describing "simultaneous" measurement of  position and momen- 
tum in a given state is greater than the von Neumann entropy of this state. 
I t  is a certain continuous analogy of the following inequality (Klein, 1931; 
von Neumann,  1932.) 

- ~  Tr  pP• In Tr  PPn >1 --Tr  p In p 
n = l  

for an arbitrary state described by a density operator p and the resolution of 
identity {Pn}~= 1, ~ =  1 P~ = 1, where H(p) = - Tr  p In p is the yon Neumann 
entropy for the state p. 
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We recall the definition of  an observable in the sense of Davies (1976). 

Definition 1. Let f2 be a set with a or-field of  Borel subsets ~,, and let aY' 
be a Hilbert space. A positive operator-valued measure on f~ is defined to be 
a map A: ~-  -+ B ( ~ )  [B(a~f ') is the algebra of bounded operators on ~ ]  such 
that 

O) A(E) i> A(Z) = 0 for all E e l ' ;  
(ii) if {E,} is a countable collection of disjoint sets in ~,, then A(U;=  1 E,) 

= ~=1 A(E,), where the series converges in a weak operator 
topology. This measure is called an observable if also 

(iii) A(f~) = 1. 

For  our purpose we assume that the Lebesgue measure m is defined on 5.. 
Thus (f2, ~,, m) is a measure space. 

The state as usual is described by a density operator (positive linear 
operator with a unit trace). 

The probability that the measurement of  A in the state p yields a result 
in the set E E ~" is taken to be 

pa(E, p) = Tr  pA(E) 

Let pa(. ,  p) be absolutely continuous with respect to the Lebesgue measure 
(we call such observables spectrally absolutely continuous). Then there exists a 
nonnegative Radon-Nikodym derivative (dpa/dm)pa( �9 , p) with respect to m. 
Thus we propose the following definition. 

Definition 2. Let A be a spectrally absolutely continuous observable. The 
expression 

H(p, A) = fa ap'a dPA -- ~ In ~ dm 

is called A-entropy with respect to an observable A. 

2. A-ENTROPY FOR THE F U Z Z Y  OBSERVABLES 

Recently so-called fuzzy observables [Twareque Ali and Emch, 1974; 
Twareque Ali and Doebner, 1976; and Prugovecki, 1976 (and references 
therein)] have been investigated. 

In usual quantum considerations a measurement is treated as an ideal 
one. No errors of  observation are involved. In fact every physical measure- 
ment is subject to errors. 

For  example (Twareque Ali and Emch, 1974), a measurement of position 
of  a particle can be made as precise as the applied instrument allows and it 
cannot be eliminated altogether. In this example--a particle moving on a real 
l ine--the Hilbert space corresponding to this system is L2(•) (a space of  
square integrable, complex-valued functions on R), and the usual position 
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operator is (Q#)(x) = x~b(x) for all x e R and all ~b(x) e D(Q), where D(Q) is 
the dense domain of  Q in L2(R). The projector P corresponding to Q via the 
spectral theorem is defined by 

( P ( E ) ~ ) ( x )  = x~(x)~(x) 
where XE(X) is a characteristic function of E, and the probability that the 
particle is found in E when the system is in the state ~ is equal to po(E) = 
(~b, P(E)~b). Let x0 be the coordinate of  the midpoint of the interval E. Assume 
that our apparatus has a finite resolution A and thus cannot distinguish 
between two points that are separated by a distance less than A. We may 
assume that the observed midpoint is distributed on R according to probability 
density x ---~fa(x) centered at xo and symmetric. Then 

= f xE *fa(x)[4'(x)[ 2 dx = (a(E)~b, ~b) p~(e) 

and (a(E)~b)(x) = XE ,f~(x)~(x), where �9 denotes the convolution. Obviously 
the measure ri ,(E) is absolutely continuous with respect to the Lebesgue 
measure on R. Thus H(p, a) for p = ]~b)(~b I exists. 

For  such entropy the following theorem holds. 

Theorem 1. Let ~ = L2(R) and a is defined as before. Then for 
p = [~b)(~b[ we have the inequality H(p, a) >>- H(p, P). 

Proof. l '  

H(O, a) = - ~  I~bl a *f~(y) In = *fr(y) dy 

= - . ( . (  [~b(x)12fA(y - x) ln [~bl2 , fr(y)  dx dy (1) 

H(p,e) = - f  lr ~ In I~b(x)[ 2 dx 

- x)l+ x)i  In I+ x)l + 

The difference between (1) and (2) is positive because fZ~(x)>1 0 and 
f fA(x) dx = 1. 

This proof  is a particular case of inequality for two probability densities 
f (y)  and g(x) that are connected by the equality 

g(x) = ~ K(x, y)f(y) dy 

where K(x, y) >1 0 is a transition probability andf  K(x, y) dx = f K(x, y) dy = 1 
(Isihara, 1971). 

This inequality agrees with our interpretation of H(p, a) as an un- 
certainty of  the outcome of measurement of an observable a in the state p. 
For  the sharp measurement of position the uncertainty is less than for the 
fuzzy position. Our concept of  entropy reflects the accuracy of measurement. 
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3. CONTINUITY PROPERTIES 

The usual properties of A-entropy such as invariance properties, addi- 
tivity, subadditivity, convexity, and so on were investigated by Grabowski 
(1978). In this section we examine only the continuity properties of A-entropy 
for a spectrally absolutely continuous observable. For this kind of entropy 
the result of Ochs (1976, Lemma 2) is applied. Thus H(p, A) is not continuous 
with respect to the .~l-topology, since in the case m(f~) = oo every neighbor- 
hood of dpA/dm contains a probability density f with H(f) = oo. However, 
for the observables that have spectral density satisfying certain conditions the 
weaker form of the continuity exists. 

Definition 3. Observable A has a spectral density if for each A e f2 there 
exists a bounded positive definite operator F(A) [F(A) e B(aYf)] satisfying 

A(E) = f~ F(A) dm(h), for E e ~" (3) 

in a weak sense. 
For such observables the following dominated convergence theorem may 

be proved. 

Theorem 2. Let B/> 0 be an operator such that H(B, A) < oo. Let p~ 
be a sequence of density operators converging weakly toward a 
density operator p with p~ ~< p + B and F2(h) = F(h). Then 

H(pn, A) --+ H(p, A) 

Owing to the condition F2(A)= F(A), we have the continuous 
resolution of identity. 

Proof. 
p. <~ B + p, F(A)pnF(,~) <~ F(.~)pF(,~) + F(,~)BF(A) 

p, Z_> p => [Tr pr(h) - Tr p,F(A)[ ~< [Ir(A)l] lip - mill 

On the set of states the weak convergence implies a convergence in a trace 
norm (Davies, 1976). Thus Theorem 3 of (Ochs, 1976) may be applied. 

When [[F(A)[[ ~< 1, H(p, A) is lower semicontinuous in the trace norm. 

Theorem 3. For an observable satisfying (3), and when [[F(A)[[ ~< 1 
and f2 is n-dimensional, the A-entropy is lower semicontinuous on 
the set of states with respect to the topology induced by the trace 
norm. 

Proof. Let c#(O) be a family of bounded subsets. Then for E ~ qs the 
functional 

h(p, A, E) = - f  Tr pF(A) In Tr pF(A) din(A) 
JE 
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is continuous in the trace norm. We take a sequence E, --~ f2, where E~ ~ cg(f~). 
Then h(p, A, E,) --~ H(p, A), owing to []F(A)I [ ~< 1, is a limit of nondecreasing 
sequence of continuous functions and hence is lower semicontinuous. 

For  example, for an observable describing a fuzzy measurement the 
spectral density is (Fu$)(x) = f ~ ( x -  y)~b(x). If  fzx is essentially bounded, 
f a  e L| and such that [[fA[[, ~< 1, then A-entropy for that observable is 
lower semicontinuous. Physically interesting A-entropy that satisfies these 
conditions is presented in the next section. 

4. " S I M U L T A N E O U S "  M E A S U R E M E N T S  A N D  A-ENTROPY 

There are some measurements whose result can be regarded as a pair of  
real numbers or as a single complex number. An optimal "simultaneous" 
measurement of  position Q and momentum P which do not commute is an 
example. We can introduce operators a and a + satisfying the commutation 
relation [a, a + ] _~ I and such that 

a = (Q + iP)/v/2, a + = (Q - iP)/a/2 

a has eigenstates [z):a[z) = zlz ) (coherent states). The observable corre- 
sponding to such measurement is 

A(E) = ~r-1 f~ [zXz[d2z 

in a weak sense and E ~ ~(C),  ~(C)  is a ~-algebra of  Borel subsets of the 
complex plane. A(E) has the spectral density P z - - [ z ) ( z [ .  Tr  pA(E) is 
absolutely continuous with respect to the Lebesgue measure on C, i.e., d2z/~. 

Then the uncertainty of the simultaneous measurement of P and Q in the  
state p is 

n(p, A) = _l~r fc dZz(z]P[z) In (z[plz) 

Entropy H(p, A) has a certain connection with classical entropy? 
Usually in statistical mechanics a classical entropy of  probability density 
p(q, p) on the phase space 17 is described in the following way 

goz(p) = - ~ p(q, p) In o(q, p) dq dp 

where h is the Planck constant (we consider the one-dimensional case). This 
expression has a semiclassical character owing to h which is the smallest 
volume in the phase space of one particle. The appearance of this smallest 
volume is a consequence of the uncertainty relation. The classical entropy 

1 This interpretation of H(O, .4) was pointed out to me by A. Wehrl. 
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may be negative. This fact is very difficult to interpret and is a result of a 
localization of  p(q, p) on the region smaller than h. Of course it is in contra- 
diction with the quantum Heisenberg relation. Let Hcz ~< O. Then p(q, p)  t> 1 
on a certain subset X c r with the Liouvitle measure A. Because 

we have 

p(q, p) dq dp = 1 

l fv l ~x l ~r p(q, p) dq dp Kq,  p) aq ap -- ~ p(q, p) aq ap + ~ _ 

A 1 fi" p(q' p) dq dp >t A >~ -~ + ~ _~ -~ 

Thus A < h. 
Our entropy H(p, A) has a very nice property. The range of this entropy 

is equal to extended ~ +. It  easily follows from the inequality 

o .< <~lpl~> -< IlphllP~ll = 1 

Because of  this property, H(p, A) may be interpreted as a classical entropy, 
where the probability density p(z)= p(q,p)= (z]p[z) corresponds to the 
density operator p. 

For  this entropy the following inequality is true and shows the connection 
between H(p, A) and the von Neumann entropy. 

Theorem 4. Let A(E) be as before and let p be a density operator. 
Then 

g(p ,  A) > H(p) (4) 

where H(p) = - T r  p In p is the yon Neumann entropy. 

Proof. Using the spectral decomposition of p, p = Y~= i P~P~I, Tr Y,~ = 1, 
1 i>p~/> O, wehave  

oo oo 

H f p ,  A) = - f d2z ! y p,l(z[~,,>]2 In ~ p~l(z[~b~)[ 2 

From the normalization conditions 

'y 2 ~r ](zI~)l~d2z-= 1 and l<zlr 2 = 1 
t = 1  

and from the arguments in Theorem 1 we have the desired inequality. Equality 
would hold for p~ = (z[plz), which is impossible because of  hermiticity of  p 
and overcompleteness of coherent states. 

This inequality is a certain continuous analogue of the inequality men- 
tioned in the Introduction. In fact, using the base proposed by yon Neumann 
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Property 1. 
arguments  give 

for  z = ~r-l12(l + ira), where / ,  m are integers (here P~ = [z)(z[ is a discrete 
resolution o f  identity), we have the following inequality 

- ~ .  Tr  PP~,m In Tr  PPt.m >1 - T r  p In p (5) 
l,m=O 

Remarks. Let p be a classical state (Davies, 1976), i.e., it has the so-called 
P-representat ion 

p=l f d2zP(z)]zXz[, P(z) >~ O, ~-l f P(z) d2z = 1 

On the set o f  such states the following inequalities hold. 

p~ = Tr  pPi = (I/rr) f e(z)(zlP~lz)d2z, and the preceding 

Property 2. 

- T r  p In p >I _l~r f P(z) In P(z)d2z (6) 

H(p, A)/>  1 (7) 

(z[p[z) = P *fe(z), fe(z) = (1/r0e-J~12. Changing variables in the integral, 
t reat ingP(z)  as the transit ion probabili ty and again using the same arguments,  
we obtain (7). 

A C K N O W L E D G M E N T S  

After the first version of this paper was prepared, I learned that A. Wehrl (Vienna) 
proved inequalities (4) and (6) using different methods ("On the relation between classical 
and quantum-mechanical entropy," preprint Wien). Webrl conjectured that (7) holds for 
all states. Recently E. Lieb proved this conjecture (private communication from A. Wehrt). 

I am indebted to A. Wehrl for reading this paper and for his comments and remarks. 
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